
1

Cryptography

 Overview
 Symmetric Key Cryptography
 Public Key Cryptography
 Message integrity and digital signatures

2

Cryptography issues

Confidentiality: only sender, intended
receiver should “understand” message
contents
sender encrypts message
receiver decrypts message

End-Point Authentication: sender, receiver
want to confirm identity of each other

Message Integrity: sender, receiver want to
ensure message not altered (in transit, or
afterwards) without detection

3

Friends and enemies: Alice, Bob, Trudy
 well-known in network security world
 Bob, Alice (lovers!) want to communicate “securely”
 Trudy (intruder) may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control
messages

data data

Alice Bob

Trudy

4

Who might Bob, Alice be?

 … well, real-life Bobs and Alices!
Web browser/server for electronic

transactions (e.g., on-line purchases)
 on-line banking client/server
DNS servers
 routers exchanging routing table updates

5

The language of cryptography

m plaintext message
KA(m) ciphertext, encrypted with key KA

m = KB(KA(m))

plaintext plaintextciphertext

KA

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KB

6

Simple encryption scheme
substitution cipher: substituting one thing for another

 monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Key: the mapping from the set of 26 letters to the
set of 26 letters

7

Polyalphabetic encryption
 n monoalphabetic cyphers, M1,M2,…,Mn

 Cycling pattern:
 e.g., n=4, M1,M3,M4,M3,M2; M1,M3,M4,M3,M2;

 For each new plaintext symbol, use
subsequent monoalphabetic pattern in
cyclic pattern
 dog: d from M1, o from M3, g from M4

 Key: the n ciphers and the cyclic pattern

8

Breaking an encryption scheme

 Cipher-text only
attack: Trudy has
ciphertext that she
can analyze

 Two approaches:
 Search through all

keys: must be able to
differentiate resulting
plaintext from
gibberish

 Statistical analysis

 Known-plaintext attack:
trudy has some plaintext
corresponding to some
ciphertext
 eg, in monoalphabetic

cipher, trudy determines
pairings for a,l,i,c,e,b,o,

 Chosen-plaintext attack:
trudy can get the
cyphertext for some
chosen plaintext

9

Types of Cryptography

 Crypto often uses keys:
 Algorithm is known to everyone
Only “keys” are secret

 Public key cryptography
 Involves the use of two keys

 Symmetric key cryptography
 Involves the use one key

Hash functions
 Involves the use of no keys
Nothing secret: How can this be useful?

10

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same
(symmetric) key: K

 e.g., key is knowing substitution pattern in mono
alphabetic substitution cipher

Q: how do Bob and Alice agree on key value?

plaintextciphertext

K S

encryption
algorithm

decryption
algorithm

S

K S

plaintext
message, m

K (m)S
m = KS(KS(m))

11

Two types of symmetric ciphers

 Stream ciphers
 encrypt one bit at time

 Block ciphers
 Break plaintext message in equal-size blocks
 Encrypt each block as a unit

12

Stream Ciphers

 Combine each bit of keystream with bit of
plaintext to get bit of ciphertext

 m(i) = ith bit of message
 ks(i) = ith bit of keystream
 c(i) = ith bit of ciphertext
 c(i) = ks(i)  m(i) ( = exclusive or)
 m(i) = ks(i)  c(i)

keystream
generatorkey keystream

pseudo random

13

Problems with stream ciphers
Known plain-text attack
 There’s often predictable

and repetitive data in
communication messages

 attacker receives some
cipher text c and correctly
guesses corresponding
plaintext m

 ks = m  c
 Attacker now observes c’,

obtained with same
sequence ks

 m’ = ks  c’

Even easier
 Attacker obtains two

ciphertexts, c and c’,
generating with same key
sequence

 c  c’ = m  m’
 There are well known

methods for decrypting 2
plaintexts given their XOR

Integrity problem too
 suppose attacker knows c

and m (eg, plaintext attack);
 wants to change m to m’
 calculates c’ = c  (m  m’)
 sends c’ to destination

14

RC4 Stream Cipher

 RC4 is a popular stream cipher
 Extensively analyzed and considered good
 Key can be from 1 to 256 bytes
 Used in WEP for 802.11
 Can be used in SSL

15

Block ciphers

Message to be encrypted is processed in
blocks of k bits (e.g., 64-bit blocks).

 1-to-1 mapping is used to map k-bit block of
plaintext to k-bit block of ciphertext

Example with k=3:
input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001

What is the ciphertext for 010110001111 ?

16

Block ciphers

How many possible mappings are there for
k=3?
How many 3-bit inputs?
How many permutations of the 3-bit inputs?
 Answer: 40,320 ; not very many!

 In general, 2k! mappings; huge for k=64
 Problem:

 Table approach requires table with 264 entries,
each entry with 64 bits

 Table too big: instead use function that
simulates a randomly permuted table

17

Prototype function
64-bit input

S1

8bits

8 bits

S2

8bits

8 bits

S3

8bits

8 bits

S4

8bits

8 bits

S7

8bits

8 bits

S6

8bits

8 bits

S5

8bits

8 bits

S8

8bits

8 bits

64-bit intermediate

64-bit output
Loop for
n rounds

8-bit to
8-bit
mapping

From Kaufman
et al

18

Why rounds in prototpe?

 If only a single round, then one bit of input
affects at most 8 bits of output.

 In 2nd round, the 8 affected bits get
scattered and inputted into multiple
substitution boxes.

How many rounds?
How many times do you need to shuffle cards
 Becomes less efficient as n increases

19

Encrypting a large message

Why not just break message in 64-bit
blocks, encrypt each block separately?
 If same block of plaintext appears twice, will

give same cyphertext.
How about:

 Generate random 64-bit number r(i) for each
plaintext block m(i)

 Calculate c(i) = KS(m(i)  r(i))
 Transmit c(i), r(i), i=1,2,…
 At receiver: m(i) = KS(c(i))  r(i)
 Problem: inefficient, need to send c(i) and r(i)

20

Cipher Block Chaining (CBC)

 CBC generates its own random numbers
 Have encryption of current block depend on result of

previous block
 c(i) = KS(m(i)  c(i-1))
 m(i) = KS(c(i))  c(i-1)

 How do we encrypt first block?
 Initialization vector (IV): random block = c(0)
 IV does not have to be secret

 Change IV for each message (or session)
 Guarantees that even if the same message is sent

repeatedly, the ciphertext will be completely different
each time

21

Symmetric key crypto: DES

DES: Data Encryption Standard
 US encryption standard [NIST 1993]
 56-bit symmetric key, 64-bit plaintext input
 Block cipher with cipher block chaining
 How secure is DES?

 DES Challenge: 56-bit-key-encrypted phrase
decrypted (brute force) in less than a day

No known good analytic attack
 making DES more secure:

 3DES: encrypt 3 times with 3 different keys
(actually encrypt, decrypt, encrypt)

22

Symmetric key
crypto: DES

initial permutation
16 identical “rounds” of

function application,
each using different
48 bits of key

final permutation

DES operation

23

AES: Advanced Encryption Standard

 new (Nov. 2001) symmetric-key NIST
standard, replacing DES

 processes data in 128 bit blocks
 128, 192, or 256 bit keys
 brute force decryption (try each key)

taking 1 sec on DES, takes 149 trillion
years for AES

24

Public Key Cryptography

symmetric key crypto
 requires sender,

receiver know shared
secret key

 Q: how to agree on key
in first place
(particularly if never
“met”)?

public key cryptography
 radically different

approach [Diffie-
Hellman76, RSA78]

 sender, receiver do
not share secret key

 public encryption key
known to all

 private decryption
key known only to
receiver

25

Public key cryptography

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
messageK (m)B

+

K B
+

Bob’s private
key

K B
-

m = K (K (m))B
+

B
-

26

Public key encryption algorithms

need K () and K () such thatB B
. .

given public key K , it should be
impossible to compute
private key K B

B

Requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm

+ -

K (K (m)) = m
BB

- +

+

-

27

Prerequisite: modular arithmetic

 x mod n = remainder of x when divide by n
 Facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n

 Thus
(a mod n)d mod n = ad mod n

 Example: x=14, n=10, d=2:
(x mod n)d mod n = 42 mod 10 = 6
xd = 142 = 196 xd mod 10 = 6

28

RSA: getting ready

 A message is a bit pattern.
 A bit pattern can be uniquely represented by an

integer number.
 Thus encrypting a message is equivalent to

encrypting a number.
Example
 m= 10010001 . This message is uniquely

represented by the decimal number 145.
 To encrypt m, we encrypt the corresponding

number, which gives a new number (the
cyphertext).

29

RSA: Creating public/private key
pair
1. Choose two large prime numbers p, q.

(e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is exactly divisible by z.
(in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

KB
+ KB

-

30

RSA: Encryption, decryption
0. Given (n,e) and (n,d) as computed above

1. To encrypt message m (<n), compute
c = m mod ne

2. To decrypt received bit pattern, c, compute
m = c mod nd

m = (m mod n)e mod ndMagic
happens!

c

31

RSA example:
Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

bit pattern m me c = m mod ne

0000l000 12 24832 17

c m = c mod nd
17 481968572106750915091411825223071697 12

cd

encrypt:

decrypt:

Encrypting 8-bit messages.

32

Why does RSA work?

 Must show that cd mod n = m
where c = me mod n

 Fact: for any x and y: xy mod n = x(y mod z) mod n
 where n= pq and z = (p-1)(q-1)

 Thus,
cd mod n = (me mod n)d mod n

= med mod n
= m(ed mod z) mod n
= m1 mod n
= m

33

RSA: another important property

The following property will be very useful later:

K (K (m)) = m
BB

- +
K (K (m))BB

+ -
=

use public key
first, followed
by private key

use private key
first, followed
by public key

Result is the same!

34

Follows directly from modular arithmetic:

(me mod n)d mod n = med mod n
= mde mod n
= (md mod n)e mod n

K (K (m)) = m
BB

- +
K (K (m))BB

+ -
=Why ?

35

Why is RSA Secure?
 Suppose you know Bob’s public key (n,e).

How hard is it to determine d?
 Essentially need to find factors of n

without knowing the two factors p and q.
 Fact: factoring a big number is hard.

Generating RSA keys
Have to find big primes p and q
Approach: make good guess then apply

testing rules (see Kaufman)

36

Session keys

 Exponentiation is computationally intensive
DES is at least 100 times faster than RSA
Session key, KS

 Bob and Alice use RSA to exchange a
symmetric key KS

Once both have KS, they use symmetric key
cryptography

37

Diffie-Hellman

Allows two entities to agree on shared key.
 But does not provide encryption

 p is a large prime; g is a number less than p.
 p and g are made public

Alice and Bob each separately choose 512-
bit random numbers, SA and SB.
 the private keys

Alice and Bob compute public keys:
 TA = gSA mod p ; TB = gSB mod p ;

38

Diffie-Helman (2)
Alice and Bob exchange TA and TB in the clear
Alice computes (TB)SA mod p
 Bob computes (TA)SB mod p
 shared secret:

 S = (TB)SA mod p = = gSASB mod p = (TA)SB mod p
 Even though Trudy might sniff TB and TA,

Trudy cannot easily determine S.
 Problem: Man-in-the-middle attack:

 Alice doesn’t know for sure that TB came from Bob;
may be Trudy instead

 See Kaufman et al for solutions

39

Diffie-Hellman: Toy Example
 p = 11 and g = 5
 Private keys: SA = 3 and SB = 4
Public keys:
 TA = gSA mod p = 53 mod 11 = 125 mod 11 = 4
 TB = gSB mod p = 54 mod 11 = 625 mod 11 = 9
Exchange public keys & compute shared secret:
 (TB)SA mod p = 93 mod 11 = 729 mod 11 = 3
 (TA)SB mod p = 44 mod 11 = 256 mod 11 = 3
Shared secret:
 3 = symmetric key

40

Message Integrity
Allows communicating parties to verify

that received messages are authentic.
 Content of message has not been altered
 Source of message is who/what you think it is
Message has not been artificially delayed

(playback attack)
 Sequence of messages is maintained

 Let’s first talk about message digests

41

Message Digests

 Function H() that takes as
input an arbitrary length
message and outputs a
fixed-length string:
“message signature”

 Note that H() is a many-
to-1 function

 H() is often called a “hash
function”

 Desirable properties:
 Easy to calculate
 Irreversibility: Can’t

determine m from H(m)
 Collision resistance:

Computationally difficult
to produce m and m’ such
that H(m) = H(m’)

 Seemingly random output

large
message

m

H: Hash
Function

H(m)

42

Internet checksum: poor message
digest

Internet checksum has some properties of hash function:
 produces fixed length digest (16-bit sum) of input
 is many-to-one

 But given message with given hash value, it is easy to find another
message with same hash value.

 Example: Simplified checksum: add 4-byte chunks at a time:

I O U 1
0 0 . 9
9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1
9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

43

Hash Function Algorithms
 MD5 hash function widely used (RFC 1321)

 computes 128-bit message digest in 4-step
process.

 SHA-1 is also used.
 US standard [NIST, FIPS PUB 180-1]
 160-bit message digest

44

Message Authentication Code (MAC)
m

es
sa

ge

H()

s

m
es

sa
ge

m
es

sa
ge

s

H()

compare

s = shared secret

 Authenticates sender
 Verifies message integrity
 No encryption !
 Also called “keyed hash”
 Notation: MDm = H(s||m) ; send m||MDm

45

HMAC

 Popular MAC standard
 Addresses some subtle security flaws

1. Concatenates secret to front of message.
2. Hashes concatenated message
3. Concatenates the secret to front of

digest
4. Hashes the combination again.

46

Example: OSPF

 Recall that OSPF is an
intra-AS routing
protocol

 Each router creates
map of entire AS (or
area) and runs
shortest path
algorithm over map.

 Router receives link-
state advertisements
(LSAs) from all other
routers in AS.

Attacks:
 Message insertion
 Message deletion
 Message modification

 How do we know if an
OSPF message is
authentic?

47

OSPF Authentication

 Within an Autonomous
System, routers send
OSPF messages to
each other.

 OSPF provides
authentication choices
 No authentication
 Shared password:

inserted in clear in 64-
bit authentication field
in OSPF packet

 Cryptographic hash

 Cryptographic hash
with MD5
 64-bit authentication

field includes 32-bit
sequence number

 MD5 is run over a
concatenation of the
OSPF packet and
shared secret key

 MD5 hash then
appended to OSPF
packet; encapsulated in
IP datagram

End-point authentication

Want to be sure of the originator of the
message – end-point authentication.

Assuming Alice and Bob have a shared
secret, will MAC provide message
authentication.
We do know that Alice created the message.
 But did she send it?

48

MACTransfer $1M
from Bill to Trudy

MACTransfer $1M from
Bill to Trudy

Playback attack
MAC =
f(msg,s)

“I am Alice”

R

MACTransfer $1M
from Bill to Susan

MAC =
f(msg,s,R)

Defending against playback
attack: nonce

51

Digital Signatures

Cryptographic technique analogous to hand-
written signatures.

 sender (Bob) digitally signs document,
establishing he is document owner/creator.

 Goal is similar to that of a MAC, except now use
public-key cryptography

 verifiable, nonforgeable: recipient (Alice) can
prove to someone that Bob, and no one else
(including Alice), must have signed document

52

Digital Signatures

Simple digital signature for message m:
 Bob signs m by encrypting with his private key

KB, creating “signed” message, KB(m)--

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key K B

-

Bob’s message,
m, signed

(encrypted) with
his private key

K B
-(m)

53

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

Alice verifies signature and
integrity of digitally signed
message:

KB(H(m))-

encrypted
msg digest

KB(H(m))-

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
?

Digital signature = signed message digest

54

Digital Signatures (more)
 Suppose Alice receives msg m, digital signature KB(m)
 Alice verifies m signed by Bob by applying Bob’s

public key KB to KB(m) then checks KB(KB(m)) = m.
 If KB(KB(m)) = m, whoever signed m must have used

Bob’s private key.

+ +

-

-

- -

+

Alice thus verifies that:
 Bob signed m.
 No one else signed m.
 Bob signed m and not m’.

Non-repudiation:
 Alice can take m, and signature KB(m) to

court and prove that Bob signed m.
-

55

Public-key certification

Motivation: Trudy plays pizza prank on Bob
 Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four
pepperoni pizzas. Thank you, Bob

 Trudy signs order with her private key
 Trudy sends order to Pizza Store
 Trudy sends to Pizza Store her public key, but

says it’s Bob’s public key.
 Pizza Store verifies signature; then delivers

four pizzas to Bob.
 Bob doesn’t even like Pepperoni

56

Certification Authorities
 Certification authority (CA): binds public key to

particular entity, E.
 E (person, router) registers its public key with CA.

 E provides “proof of identity” to CA.
 CA creates certificate binding E to its public key.
 certificate containing E’s public key digitally signed by CA

– CA says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

57

Certification Authorities
 When Alice wants Bob’s public key:

 gets Bob’s certificate (Bob or elsewhere).
 apply CA’s public key to Bob’s certificate, get

Bob’s public key

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA
+

K B
+

58

Certificates: summary

 Primary standard X.509 (RFC 2459)
 Certificate contains:

 Issuer name
 Entity name, address, domain name, etc.
 Entity’s public key
 Digital signature (signed with issuer’s private

key)
 Public-Key Infrastructure (PKI)

 Certificates and certification authorities
Often considered “heavy”

