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Cryptography 

 Overview
 Symmetric Key Cryptography
 Public Key Cryptography
 Message integrity and digital signatures
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Cryptography issues

Confidentiality: only sender, intended 
receiver should “understand” message 
contents
sender encrypts message
receiver decrypts message

End-Point Authentication: sender, receiver 
want to confirm identity of each other 

Message Integrity: sender, receiver want to 
ensure message not altered (in transit, or 
afterwards) without detection
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Friends and enemies: Alice, Bob, Trudy
 well-known in network security world
 Bob, Alice (lovers!) want to communicate “securely”
 Trudy (intruder) may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control 
messages

data data

Alice Bob

Trudy
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Who might Bob, Alice be?

 … well, real-life Bobs and Alices!
Web browser/server for electronic 

transactions (e.g., on-line purchases)
 on-line banking client/server
DNS servers
 routers exchanging routing table updates
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The language of cryptography

m plaintext message
KA(m) ciphertext, encrypted with key KA

m = KB(KA(m))

plaintext plaintextciphertext

KA

encryption
algorithm

decryption 
algorithm

Alice’s 
encryption
key

Bob’s 
decryption
key

KB
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Simple encryption scheme
substitution cipher: substituting one thing for another

 monoalphabetic cipher: substitute one letter for another

plaintext:  abcdefghijklmnopqrstuvwxyz

ciphertext:  mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Key: the mapping from the set of 26 letters to the 
set of 26 letters
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Polyalphabetic encryption
 n monoalphabetic cyphers, M1,M2,…,Mn

 Cycling pattern:
 e.g., n=4, M1,M3,M4,M3,M2; M1,M3,M4,M3,M2;

 For each new plaintext symbol, use 
subsequent monoalphabetic pattern in 
cyclic pattern
 dog: d from M1, o from M3, g from M4

 Key: the n ciphers and the cyclic pattern



8

Breaking an encryption scheme

 Cipher-text only 
attack: Trudy has 
ciphertext that she 
can analyze

 Two approaches:
 Search through all 

keys: must be able to 
differentiate resulting 
plaintext from 
gibberish

 Statistical analysis

 Known-plaintext attack:
trudy has some plaintext 
corresponding to some 
ciphertext
 eg, in monoalphabetic 

cipher, trudy determines 
pairings for a,l,i,c,e,b,o,

 Chosen-plaintext attack:
trudy can get the 
cyphertext for some 
chosen plaintext
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Types of Cryptography

 Crypto often uses keys:
 Algorithm is known to everyone
Only “keys” are secret

 Public key cryptography 
 Involves the use of two keys

 Symmetric key cryptography
 Involves the use one key

Hash functions
 Involves the use of no keys
Nothing secret: How can this be useful?
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Symmetric key cryptography

symmetric key crypto: Bob and Alice share same 
(symmetric) key: K

 e.g., key is knowing substitution pattern in mono 
alphabetic substitution cipher

Q: how do Bob and Alice agree on key value?

plaintextciphertext

K S

encryption
algorithm

decryption 
algorithm

S

K S

plaintext
message, m

K    (m)S
m = KS(KS(m))
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Two types of symmetric ciphers

 Stream ciphers
 encrypt one bit at time

 Block ciphers
 Break plaintext message in equal-size blocks
 Encrypt each block as a unit
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Stream Ciphers

 Combine each bit of keystream with bit of 
plaintext to get bit of ciphertext

 m(i) = ith bit of message
 ks(i) = ith bit of keystream
 c(i) = ith bit of ciphertext
 c(i) = ks(i)  m(i)   ( = exclusive or)
 m(i) = ks(i)  c(i) 

keystream
generatorkey keystream

pseudo random
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Problems with stream ciphers
Known plain-text attack
 There’s often predictable 

and repetitive data in 
communication messages 

 attacker receives some 
cipher text c and correctly 
guesses corresponding 
plaintext m

 ks = m  c
 Attacker now observes c’, 

obtained with same 
sequence ks

 m’ = ks  c’

Even easier
 Attacker obtains two 

ciphertexts, c and c’, 
generating with same key 
sequence

 c  c’ = m  m’
 There are well known 

methods for decrypting 2 
plaintexts given their XOR

Integrity problem too
 suppose attacker knows c 

and m (eg, plaintext attack); 
 wants to change m to m’
 calculates c’ = c  (m  m’)
 sends c’ to destination
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RC4 Stream Cipher

 RC4 is a popular stream cipher
 Extensively analyzed and considered good
 Key can be from 1 to 256 bytes
 Used in WEP for 802.11
 Can be used in SSL
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Block ciphers

Message to be encrypted is processed in 
blocks of k bits (e.g., 64-bit blocks).

 1-to-1 mapping is used to map k-bit block of 
plaintext to k-bit block of ciphertext

Example with k=3:
input output
000      110
001       111
010       101
011       100

input output
100      011
101       010
110       000
111       001

What is the ciphertext for 010110001111 ?
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Block ciphers

How many possible mappings are there for 
k=3?
How many 3-bit inputs?
How many permutations of the 3-bit inputs?
 Answer: 40,320 ;  not very many!

 In general, 2k! mappings;   huge for k=64
 Problem: 

 Table approach requires table with 264 entries, 
each entry with 64 bits

 Table too big: instead use function that 
simulates a randomly permuted table
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Prototype function
64-bit input

S1

8bits

8 bits

S2

8bits

8 bits

S3

8bits

8 bits

S4

8bits

8 bits

S7

8bits

8 bits

S6

8bits

8 bits

S5

8bits

8 bits

S8

8bits

8 bits

64-bit intermediate

64-bit output
Loop for 
n rounds

8-bit to
8-bit
mapping

From Kaufman
et al
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Why rounds in prototpe?

 If only a single round, then one bit of input 
affects at most 8 bits of output.

 In 2nd round, the 8 affected bits get 
scattered and inputted into multiple 
substitution boxes.

How many rounds?
How many times do you need to shuffle cards
 Becomes less efficient as n increases
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Encrypting a large message

Why not just break message in 64-bit 
blocks, encrypt each block separately?
 If same block of plaintext appears twice, will 

give same cyphertext. 
How about:

 Generate random 64-bit number r(i) for each 
plaintext block m(i)

 Calculate c(i) = KS( m(i)  r(i) )
 Transmit c(i), r(i), i=1,2,…
 At receiver: m(i) = KS(c(i))  r(i) 
 Problem: inefficient, need to send c(i) and r(i)
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Cipher Block Chaining (CBC)

 CBC generates its own random numbers
 Have encryption of current block depend on result of 

previous block
 c(i) = KS( m(i)  c(i-1) )
 m(i) = KS( c(i))  c(i-1) 

 How do we encrypt first block?
 Initialization vector (IV): random block = c(0)
 IV does not have to be secret

 Change IV for each message (or session)
 Guarantees that even if the same message is sent 

repeatedly, the ciphertext will be completely different 
each time
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Symmetric key crypto: DES

DES: Data Encryption Standard
 US encryption standard [NIST 1993]
 56-bit symmetric key, 64-bit plaintext input
 Block cipher with cipher block chaining
 How secure is DES?

 DES Challenge: 56-bit-key-encrypted phrase  
decrypted (brute force) in less than a day

No known good analytic attack
 making DES more secure:

 3DES: encrypt 3 times with 3 different keys
(actually encrypt, decrypt, encrypt)
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Symmetric key 
crypto: DES

initial permutation 
16 identical “rounds” of 

function application, 
each using different 
48 bits of key

final permutation

DES operation
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AES: Advanced Encryption Standard

 new (Nov. 2001) symmetric-key NIST 
standard, replacing DES

 processes data in 128 bit blocks
 128, 192, or 256 bit keys
 brute force decryption (try each key) 

taking 1 sec on DES, takes 149 trillion 
years for AES
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Public Key Cryptography

symmetric key crypto
 requires sender, 

receiver know shared 
secret key

 Q: how to agree on key 
in first place 
(particularly if never 
“met”)?

public key cryptography
 radically different 

approach [Diffie-
Hellman76, RSA78]

 sender, receiver do 
not share secret key

 public encryption key 
known to all

 private decryption 
key known only to 
receiver
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Public key cryptography

plaintext
message, m

ciphertextencryption
algorithm

decryption 
algorithm

Bob’s public
key 

plaintext
messageK  (m)B

+

K B
+

Bob’s private
key 

K B
-

m = K  (K  (m))B
+

B
-
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Public key encryption algorithms

need K  ( ) and K  ( ) such thatB B
. .

given public key K  , it should be 
impossible to compute 
private key K  B

B

Requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm

+ -

K  (K  (m))  =  m
BB

- +

+

-
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Prerequisite: modular arithmetic

 x mod n = remainder of x when divide by n
 Facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n

 Thus
(a mod n)d mod n = ad mod n

 Example: x=14, n=10, d=2:
(x mod n)d mod n = 42 mod 10 = 6
xd = 142 = 196   xd mod 10  = 6 
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RSA: getting ready

 A message is a bit pattern.
 A bit pattern can be uniquely represented by an 

integer number. 
 Thus encrypting a message is equivalent to 

encrypting a number.
Example
 m= 10010001 . This message is uniquely 

represented by the decimal number 145. 
 To encrypt m, we encrypt the corresponding 

number, which gives a new number (the 
cyphertext).
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RSA: Creating public/private key 
pair
1. Choose two large prime numbers p, q.

(e.g., 1024 bits each)

2. Compute n = pq,  z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is  exactly divisible by z.
(in other words: ed mod z  = 1 ).

5. Public key is (n,e). Private key is (n,d).

KB
+ KB

-
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RSA: Encryption, decryption
0. Given (n,e) and (n,d) as computed above

1. To encrypt message m (<n), compute
c = m   mod ne

2. To decrypt received bit pattern, c, compute
m = c   mod nd

m  =  (m   mod n)e mod ndMagic
happens!

c
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RSA example:
Bob chooses p=5, q=7.  Then n=35, z=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

bit pattern m me c = m  mod  ne

0000l000 12 24832 17

c m = c  mod  nd
17 481968572106750915091411825223071697 12

cd

encrypt:

decrypt:

Encrypting 8-bit messages.
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Why does RSA work?

 Must show that cd mod n = m 
where c = me mod n

 Fact: for any x and y: xy mod n = x(y mod z) mod n
 where n= pq and z = (p-1)(q-1)

 Thus, 
cd mod n = (me mod n)d mod n

= med mod n 
= m(ed mod z) mod n
= m1 mod n
= m
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RSA: another important property

The following property will be very useful later:

K  (K  (m)) =  m
BB

- +
K  (K  (m))BB

+ -
=

use public key 
first, followed 
by private key 

use private key 
first, followed 
by public key 

Result is the same!
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Follows directly from modular arithmetic:

(me mod n)d mod n = med mod n
= mde mod n
= (md mod n)e mod n 

K  (K  (m)) =  m
BB

- +
K  (K  (m))BB

+ -
=Why ?
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Why is RSA Secure?
 Suppose you know Bob’s public key (n,e). 

How hard is it to determine d?
 Essentially need to find factors of n 

without knowing the two factors p and q. 
 Fact: factoring a big number is hard.

Generating RSA keys
Have to find big primes p and q
Approach: make good guess then apply 

testing rules (see Kaufman)
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Session keys

 Exponentiation is computationally intensive
DES is at least 100 times faster than RSA
Session key, KS

 Bob and Alice use RSA to exchange a 
symmetric key KS

Once both have KS, they use symmetric key 
cryptography
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Diffie-Hellman

Allows two entities to agree on shared key.
 But does not provide encryption

 p is a large prime; g is a number less than p.
 p and g are made public

Alice and Bob each separately choose 512-
bit random numbers, SA and SB.
 the private keys

Alice and Bob compute public keys:
 TA = gSA  mod p ; TB = gSB    mod p ; 
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Diffie-Helman (2)
Alice and Bob exchange TA and TB in the clear
Alice computes (TB)SA  mod p
 Bob computes (TA)SB  mod p
 shared secret:

 S = (TB)SA  mod p = = gSASB  mod p = (TA)SB  mod p
 Even though Trudy might sniff TB and TA, 

Trudy cannot easily determine S.
 Problem: Man-in-the-middle attack:

 Alice doesn’t know for sure that TB came from Bob; 
may be Trudy instead

 See Kaufman et al for solutions
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Diffie-Hellman: Toy Example
 p = 11 and g = 5
 Private keys: SA = 3 and SB = 4
Public keys:
 TA = gSA  mod p = 53 mod 11 = 125 mod 11 = 4
 TB = gSB   mod p = 54 mod 11 = 625 mod 11 = 9
Exchange public keys & compute shared secret:
 (TB)SA  mod p = 93 mod 11 = 729 mod 11 = 3
 (TA)SB  mod p = 44 mod 11 = 256 mod 11 = 3
Shared secret:
 3 = symmetric key
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Message Integrity
Allows communicating parties to verify 

that received messages are authentic.
 Content of message has not been altered
 Source of message is who/what you think it is
Message has not been artificially delayed 

(playback attack)
 Sequence of messages is maintained

 Let’s first talk about message digests
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Message Digests

 Function H( ) that takes as 
input an arbitrary length 
message and outputs a 
fixed-length string: 
“message signature”

 Note that H( ) is a many-
to-1 function

 H( ) is often called a “hash 
function”

 Desirable properties:
 Easy to calculate
 Irreversibility: Can’t 

determine m from H(m)
 Collision resistance: 

Computationally difficult 
to produce m and m’ such 
that H(m) = H(m’)

 Seemingly random output

large 
message

m

H: Hash
Function

H(m)
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Internet checksum: poor message 
digest

Internet checksum has some properties of hash function:
 produces fixed length digest (16-bit sum) of input
 is many-to-one

 But given message with given hash value, it is easy to find another 
message with same hash value.

 Example: Simplified checksum: add 4-byte chunks at a time:

I O U 1
0 0 . 9
9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1
9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!
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Hash Function Algorithms
 MD5 hash function widely used (RFC 1321)

 computes 128-bit message digest in 4-step 
process. 

 SHA-1 is also used.
 US standard [NIST, FIPS PUB 180-1]
 160-bit message digest
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Message Authentication Code (MAC)
m

es
sa

ge

H( )

s

m
es

sa
ge

m
es

sa
ge

s

H( )

compare

s = shared secret

 Authenticates sender
 Verifies message integrity
 No encryption !
 Also called “keyed hash”
 Notation: MDm = H(s||m) ; send m||MDm
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HMAC

 Popular MAC standard
 Addresses  some subtle security flaws

1. Concatenates secret to front of message. 
2. Hashes concatenated message
3. Concatenates the secret to front of 

digest
4. Hashes the combination again.
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Example: OSPF

 Recall that OSPF is an 
intra-AS routing 
protocol

 Each router creates 
map of entire AS (or 
area) and runs 
shortest path 
algorithm over map.

 Router receives link-
state advertisements 
(LSAs) from all other 
routers in AS.

Attacks:
 Message insertion
 Message deletion
 Message modification

 How do we know if an 
OSPF message is 
authentic? 
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OSPF Authentication

 Within an Autonomous 
System, routers send 
OSPF messages to 
each other.

 OSPF provides 
authentication choices
 No authentication
 Shared password: 

inserted in clear in 64-
bit authentication field 
in OSPF packet

 Cryptographic hash

 Cryptographic hash 
with MD5
 64-bit authentication 

field includes 32-bit 
sequence number

 MD5 is run over a 
concatenation of the 
OSPF packet and 
shared secret key

 MD5 hash then 
appended to OSPF 
packet; encapsulated in 
IP datagram



End-point authentication

Want to be sure of the originator of the 
message – end-point authentication.

Assuming Alice and Bob have a shared 
secret, will MAC provide message 
authentication.
We do know that Alice created the message. 
 But did she send it?

48



MACTransfer $1M
from Bill to Trudy

MACTransfer $1M from
Bill to Trudy

Playback attack
MAC =
f(msg,s)



“I am Alice”

R

MACTransfer $1M 
from Bill to Susan

MAC =
f(msg,s,R)

Defending against playback 
attack: nonce
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Digital Signatures

Cryptographic technique analogous to hand-
written signatures.

 sender (Bob) digitally signs document,  
establishing he is document owner/creator. 

 Goal is similar to that of a MAC, except now use 
public-key cryptography

 verifiable, nonforgeable: recipient (Alice) can 
prove to someone that Bob, and no one else 
(including Alice), must have signed document 
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Digital Signatures

Simple digital signature for message m:
 Bob signs m by encrypting with his private key 

KB, creating “signed” message, KB(m)--

Dear Alice
Oh, how I have missed 
you. I think of you all the 
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key K B

-

Bob’s message, 
m, signed 

(encrypted) with 
his private key

K B
-(m)
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large 
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s 
private

key K B
-

+

Bob sends digitally signed 
message:

Alice verifies signature and 
integrity of digitally signed 
message:

KB(H(m))-

encrypted 
msg digest

KB(H(m))-

encrypted 
msg digest

large 
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s 
public

key K B
+

equal
?

Digital signature = signed message digest
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Digital Signatures (more)
 Suppose Alice receives msg m, digital signature KB(m)
 Alice verifies m  signed by Bob by applying Bob’s 

public key KB to KB(m) then checks KB(KB(m) ) = m.
 If KB(KB(m) ) = m, whoever signed m must have used 

Bob’s private key.

+ +

-

-

- -

+

Alice thus verifies that:
 Bob signed m.
 No one else signed m.
 Bob signed m and not m’.

Non-repudiation:
 Alice can take m, and signature KB(m) to 

court and prove that Bob signed m. 
-
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Public-key certification

Motivation: Trudy plays pizza prank on Bob
 Trudy creates e-mail order: 

Dear Pizza Store, Please deliver to me four 
pepperoni pizzas. Thank you, Bob

 Trudy signs order with her private key
 Trudy sends order to Pizza Store
 Trudy sends to Pizza Store her public key, but 

says it’s Bob’s public key.
 Pizza Store verifies signature; then delivers 

four pizzas to Bob.
 Bob doesn’t even like Pepperoni
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Certification Authorities
 Certification authority (CA): binds public key to 

particular entity, E.
 E (person, router) registers its public key with CA.

 E provides “proof of identity” to CA. 
 CA creates certificate binding E to its public key.
 certificate containing E’s public key digitally signed by CA 

– CA says “this is E’s public key”

Bob’s 
public

key K B
+

Bob’s 
identifying 

information 

digital
signature
(encrypt)

CA 
private

key K CA
-

K B
+

certificate for 
Bob’s public key, 

signed by CA
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Certification Authorities
 When Alice wants Bob’s public key:

 gets Bob’s certificate (Bob or elsewhere).
 apply CA’s public key to Bob’s certificate, get 

Bob’s public key

Bob’s 
public

key K B
+

digital
signature
(decrypt)

CA 
public

key 
K CA
+

K B
+
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Certificates: summary

 Primary standard X.509 (RFC 2459)
 Certificate contains:

 Issuer name
 Entity name, address, domain name, etc.
 Entity’s public key
 Digital signature (signed with issuer’s private 

key)
 Public-Key Infrastructure (PKI)

 Certificates and certification authorities
Often considered “heavy”


